Last updated: 2025-04-14

Checks: 6 1

Knit directory: KODAMA-Analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240618) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5f5ac63. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  KODAMA.svg
    Untracked:  analysis/singlecell_datamatrix.Rmd
    Untracked:  analysis/singlecell_seurat.Rmd
    Untracked:  code/Acinar_Cell_Carcinoma.ipynb
    Untracked:  code/Adenocarcinoma.ipynb
    Untracked:  code/Adjacent_normal_section.ipynb
    Untracked:  code/DLFPC_preprocessing.R
    Untracked:  code/DLPFC - BANKSY.R
    Untracked:  code/DLPFC - BASS.R
    Untracked:  code/DLPFC - BAYESPACE.R
    Untracked:  code/DLPFC - Nonspatial.R
    Untracked:  code/DLPFC - PRECAST.R
    Untracked:  code/DLPFC_comparison.R
    Untracked:  code/DLPFC_results_analysis.R
    Untracked:  code/MERFISH - BANKSY.R
    Untracked:  code/MERFISH - BASS.R
    Untracked:  code/MERFISH - BAYESPACE.R
    Untracked:  code/MERFISH - Nonspatial.R
    Untracked:  code/MERFISH - PRECAST.R
    Untracked:  code/MERFISH_comparison.R
    Untracked:  code/MERFISH_results_analysis.R
    Untracked:  code/VisiumHD-CRC.ipynb
    Untracked:  code/VisiumHDassignment.py
    Untracked:  code/deep learning code DLPFC.R
    Untracked:  code/save tiles.py
    Untracked:  data/Annotations/
    Untracked:  data/DLFPC-Br5292-input.RData
    Untracked:  data/DLFPC-Br5595-input.RData
    Untracked:  data/DLFPC-Br8100-input.RData
    Untracked:  data/DLPFC-general.RData
    Untracked:  data/MERFISH-input.RData
    Untracked:  data/trajectories.RData
    Untracked:  data/trajectories_VISIUMHD.RData
    Untracked:  output/BANSKY-results.RData
    Untracked:  output/BASS-results.RData
    Untracked:  output/BayesSpace-results.RData
    Untracked:  output/CRC-image.RData
    Untracked:  output/CRC-image2.RData
    Untracked:  output/CRC.png
    Untracked:  output/CRC2.png
    Untracked:  output/CRC7.png
    Untracked:  output/CRC8.png
    Untracked:  output/CRC_boxplot.png
    Untracked:  output/CRC_boxplot.svg
    Untracked:  output/CRC_boxplot2.svg
    Untracked:  output/CRC_linee.svg
    Untracked:  output/DL.RData
    Untracked:  output/DLFPC-All-2.RData
    Untracked:  output/DLFPC-All.RData
    Untracked:  output/DLFPC-Br5292.RData
    Untracked:  output/DLFPC-Br5595.RData
    Untracked:  output/DLFPC-Br8100.RData
    Untracked:  output/DLFPC-variablesXdeeplearning.RData
    Untracked:  output/DLPFC-BANSKY-results.RData
    Untracked:  output/DLPFC-BASS-results.RData
    Untracked:  output/DLPFC-BayesSpace-results.RData
    Untracked:  output/DLPFC-Nonspatial-results.RData
    Untracked:  output/DLPFC-PRECAST-results.RData
    Untracked:  output/DLPFC_all_cluster.svg
    Untracked:  output/DLPFCpathway.RData
    Untracked:  output/Figure 1 - boxplot.pdf
    Untracked:  output/Figure 2 - DLPFC 10.pdf
    Untracked:  output/Figures/
    Untracked:  output/KODAMA-results.RData
    Untracked:  output/KODAMA_DLPFC_All_original.svg
    Untracked:  output/KODAMA_DLPFC_Br5595.svg
    Untracked:  output/KODAMA_DLPFC_Br5595_slide.svg
    Untracked:  output/Loupe.csv
    Untracked:  output/MERFISH-BANSKY-results.RData
    Untracked:  output/MERFISH-BASS-results.RData
    Untracked:  output/MERFISH-BayesSpace-results.RData
    Untracked:  output/MERFISH-KODAMA-results.RData
    Untracked:  output/MERFISH-Nonspatial-results.RData
    Untracked:  output/MERFISH-PRECAST-results.RData
    Untracked:  output/MERFISH.RData
    Untracked:  output/Nonspatial-results.RData
    Untracked:  output/Prostate-GSEA.csv
    Untracked:  output/Prostate-KODAMA.RData
    Untracked:  output/Prostate-trajectory.csv
    Untracked:  output/Prostate.RData
    Untracked:  output/VisiumHD-RNA.RData
    Untracked:  output/VisiumHD-genes.pdf
    Untracked:  output/VisiumHD.RData
    Untracked:  output/boh.svg
    Untracked:  output/desmoplastic_distance_carcinoma.csv
    Untracked:  output/image.RData
    Untracked:  output/pp.RData
    Untracked:  output/pp2.RData
    Untracked:  output/pp3.RData
    Untracked:  output/pp4.RData
    Untracked:  output/pp5.RData
    Untracked:  output/prostate1.svg
    Untracked:  output/prostate2.svg
    Untracked:  output/prostate3.svg
    Untracked:  output/subclusters1.csv
    Untracked:  output/subclusters2.csv
    Untracked:  output/subclusters3.csv
    Untracked:  output/tight_boundary.geojson
    Untracked:  output/trajectory.csv

Unstaged changes:
    Deleted:    analysis/D1.Rmd
    Deleted:    analysis/DLPFC-12.Rmd
    Deleted:    analysis/DLPFC-4.Rmd
    Modified:   analysis/DLPFC.Rmd
    Deleted:    analysis/DLPFC1.Rmd
    Deleted:    analysis/DLPFC10.Rmd
    Deleted:    analysis/DLPFC2.Rmd
    Deleted:    analysis/DLPFC3.Rmd
    Deleted:    analysis/DLPFC4.Rmd
    Deleted:    analysis/DLPFC5.Rmd
    Deleted:    analysis/DLPFC6.Rmd
    Deleted:    analysis/DLPFC7.Rmd
    Deleted:    analysis/DLPFC8.Rmd
    Deleted:    analysis/DLPFC9.Rmd
    Deleted:    analysis/Du1.Rmd
    Deleted:    analysis/Du10.Rmd
    Deleted:    analysis/Du11.Rmd
    Deleted:    analysis/Du12.Rmd
    Deleted:    analysis/Du13.Rmd
    Deleted:    analysis/Du14.Rmd
    Deleted:    analysis/Du15.Rmd
    Deleted:    analysis/Du16.Rmd
    Deleted:    analysis/Du17.Rmd
    Deleted:    analysis/Du18.Rmd
    Deleted:    analysis/Du19.Rmd
    Deleted:    analysis/Du2.Rmd
    Deleted:    analysis/Du20.Rmd
    Deleted:    analysis/Du3.Rmd
    Deleted:    analysis/Du4.Rmd
    Deleted:    analysis/Du5.Rmd
    Deleted:    analysis/Du6.Rmd
    Deleted:    analysis/Du7.Rmd
    Deleted:    analysis/Du8.Rmd
    Deleted:    analysis/Du9.Rmd
    Modified:   analysis/Giotto.Rmd
    Modified:   analysis/MERFISH.Rmd
    Deleted:    analysis/MERFISH1a (copy).Rmd
    Deleted:    analysis/MERFISH1a.Rmd
    Deleted:    analysis/MERFISH1b (copy).Rmd
    Deleted:    analysis/MERFISH1b.Rmd
    Deleted:    analysis/MERFISH2a (copy).Rmd
    Deleted:    analysis/MERFISH2a.Rmd
    Deleted:    analysis/MERFISH2b (copy).Rmd
    Deleted:    analysis/MERFISH2b.Rmd
    Deleted:    analysis/MERFISH3a (copy).Rmd
    Deleted:    analysis/MERFISH3a.Rmd
    Deleted:    analysis/MERFISH3b (copy).Rmd
    Deleted:    analysis/MERFISH3b.Rmd
    Deleted:    analysis/MERFISH4a (copy).Rmd
    Deleted:    analysis/MERFISH4a.Rmd
    Deleted:    analysis/MERFISH4b (copy).Rmd
    Deleted:    analysis/MERFISH4b.Rmd
    Modified:   analysis/Prostate.Rmd
    Deleted:    analysis/STARmap.Rmd
    Modified:   analysis/Seurat.Rmd
    Deleted:    analysis/Simulation.Rmd
    Deleted:    analysis/Single-cell.Rmd
    Modified:   analysis/SpatialExperiment.Rmd
    Modified:   analysis/VisiumHD.Rmd
    Modified:   code/VisiumHD_CRC_download.sh
    Deleted:    data/Pathology.csv
    Deleted:    data/merfish.Rmd
    Deleted:    data/vis.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SpatialExperiment.Rmd) and HTML (docs/SpatialExperiment.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html d1192e9 Stefano Cacciatore 2024-08-12 Build site.
html 3374e66 Stefano Cacciatore 2024-08-06 Build site.
html 35ce733 Stefano Cacciatore 2024-08-03 Build site.
html 82fe167 Stefano Cacciatore 2024-07-24 Build site.
html 6f7daac Stefano Cacciatore 2024-07-19 Build site.
Rmd 3f7aad6 Stefano Cacciatore 2024-07-19 Start my new project
Rmd 0e75f7b GitHub 2024-07-16 Create SpatialExperiment.Rmd

Spatial Transcriptomics has revolutionized the study of tissue architecture by integrating spatial information with transcriptomic data. This tutorial demonstrates how to perform spatial data analysis and visualize the results. We will use a dataset from the mouse olfactory bulb (OB), acquired via the Spatial Transcriptomics platform (Stahl et al. 2016) link to the article. This dataset includes annotations for five cellular layers as provided by the original authors.

Spatial Transcriptomics enables researchers to explore the spatial organization of gene expression within tissues, offering insights into cellular interactions and tissue microenvironments. By combining spatial coordinates with gene expression profiles, analyses such as Principal Component Analysis (PCA) and visualization techniques like KODAMA provide powerful tools to uncover spatial patterns and relationships in biological data. # Tutorial Steps

Loading Packages and Data

library(SpatialExperiment)
library(STexampleData)
library(scran)
library(scater)
library(KODAMA)
library(KODAMAextra)

# Loading spatial data from the mouse olfactory bulb
spe = ST_mouseOB()
Extracting and Handling Cell Metadata
# Extracting cell metadata
metaData = SingleCellExperiment::colData(spe)

# Calculating library factors
spe <- computeLibraryFactors(spe)

# Summarizing size factors
summary(sizeFactors(spe))
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
0.0001259 0.6490732 0.9197538 1.0000000 1.3239172 2.3464869 

Logarithmic Transformation of Counts

spe <- logNormCounts(spe)
Principal Component Analysis (PCA)
# Selecting highly variable genes
top_hvgs <- getTopHVGs(spe, prop = 0.1)

# Performing PCA
spe <- runPCA(spe, 50, subset_row = top_hvgs, scale = TRUE)

# Defining colors for PCA plot based on "layer" metadata
colors = c("#11111199", "#111ee199", "#aa111199", "#1111cc99", "#11cccc99")
plot(reducedDim(spe, type = "PCA"), bg = colors[as.factor(metaData[,"layer"])], pch = 21, cex = 2)

Version Author Date
6f7daac Stefano Cacciatore 2024-07-19

KODAMA Analysis and Visualization with UMAP

# Running KODAMA on the reduced PCA matrix
spe = RunKODAMAmatrix(spe, reduction = "PCA")
Calculating Network

Calculating Network spatial
socket cluster with 1 nodes on host 'localhost'
================================================================================
Finished parallel computation

[1] "Calculation of dissimilarity matrix..."
================================================================================
# Visualizing KODAMA using UMAP method
spe = RunKODAMAvisualization(spe)

Visualizing Spatial Coordinates

# Retrieving spatial coordinates
xy = spatialCoords(spe)

# Plotting reduced data with KODAMA, based on "layer" metadata
plot(reducedDim(spe, type = "KODAMA"), bg = colors[as.factor(metaData[,"layer"])], pch = 21, cex = 2)

Version Author Date
6f7daac Stefano Cacciatore 2024-07-19
# Plotting spatial coordinates, based on "layer" metadata
plot(xy, bg = colors[as.factor(metaData[,"layer"])], pch = 21, cex = 2)

Version Author Date
6f7daac Stefano Cacciatore 2024-07-19

sessionInfo()
R version 4.4.3 (2025-02-28)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 20.04.6 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] KODAMAextra_1.2             e1071_1.7-16               
 [3] doParallel_1.0.17           iterators_1.0.14           
 [5] foreach_1.5.2               KODAMA_3.0                 
 [7] Matrix_1.7-3                umap_0.2.10.0              
 [9] Rtsne_0.17                  minerva_1.5.10             
[11] scater_1.32.1               ggplot2_3.5.1              
[13] scran_1.32.0                scuttle_1.14.0             
[15] STexampleData_1.12.3        ExperimentHub_2.12.0       
[17] AnnotationHub_3.12.0        BiocFileCache_2.12.0       
[19] dbplyr_2.5.0                SpatialExperiment_1.14.0   
[21] SingleCellExperiment_1.26.0 SummarizedExperiment_1.34.0
[23] Biobase_2.64.0              GenomicRanges_1.56.2       
[25] GenomeInfoDb_1.40.1         IRanges_2.38.1             
[27] S4Vectors_0.42.1            BiocGenerics_0.50.0        
[29] MatrixGenerics_1.16.0       matrixStats_1.5.0          
[31] workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] rstudioapi_0.17.1         jsonlite_2.0.0           
  [3] magrittr_2.0.3            ggbeeswarm_0.7.2         
  [5] magick_2.8.6              rmarkdown_2.29           
  [7] fs_1.6.5                  zlibbioc_1.50.0          
  [9] vctrs_0.6.5               memoise_2.0.1            
 [11] DelayedMatrixStats_1.26.0 askpass_1.2.1            
 [13] htmltools_0.5.8.1         S4Arrays_1.4.1           
 [15] curl_6.2.2                BiocNeighbors_1.22.0     
 [17] SparseArray_1.4.8         sass_0.4.9               
 [19] bslib_0.9.0               cachem_1.1.0             
 [21] misc3d_0.9-1              whisker_0.4.1            
 [23] igraph_2.1.4              mime_0.13                
 [25] lifecycle_1.0.4           pkgconfig_2.0.3          
 [27] rsvd_1.0.5                R6_2.6.1                 
 [29] fastmap_1.2.0             GenomeInfoDbData_1.2.12  
 [31] digest_0.6.37             colorspace_2.1-1         
 [33] AnnotationDbi_1.66.0      ps_1.9.0                 
 [35] rprojroot_2.0.4           RSpectra_0.16-2          
 [37] dqrng_0.4.1               irlba_2.3.5.1            
 [39] RSQLite_2.3.9             beachmat_2.20.0          
 [41] filelock_1.0.3            httr_1.4.7               
 [43] abind_1.4-8               compiler_4.4.3           
 [45] proxy_0.4-27              bit64_4.6.0-1            
 [47] withr_3.0.2               BiocParallel_1.38.0      
 [49] viridis_0.6.5             DBI_1.2.3                
 [51] openssl_2.3.2             rappdirs_0.3.3           
 [53] DelayedArray_0.30.1       rjson_0.2.23             
 [55] bluster_1.14.0            tools_4.4.3              
 [57] vipor_0.4.7               beeswarm_0.4.0           
 [59] httpuv_1.6.15             glue_1.8.0               
 [61] callr_3.7.6               promises_1.3.2           
 [63] grid_4.4.3                getPass_0.2-4            
 [65] cluster_2.1.8.1           snow_0.4-4               
 [67] generics_0.1.3            gtable_0.3.6             
 [69] class_7.3-23              BiocSingular_1.20.0      
 [71] ScaledMatrix_1.12.0       metapod_1.12.0           
 [73] XVector_0.44.0            ggrepel_0.9.6            
 [75] BiocVersion_3.19.1        pillar_1.10.1            
 [77] stringr_1.5.1             limma_3.60.6             
 [79] later_1.4.1               dplyr_1.1.4              
 [81] lattice_0.22-7            bit_4.6.0                
 [83] tidyselect_1.2.1          Rnanoflann_0.0.3         
 [85] locfit_1.5-9.12           Biostrings_2.72.1        
 [87] knitr_1.50                git2r_0.33.0             
 [89] gridExtra_2.3             edgeR_4.2.2              
 [91] xfun_0.51                 statmod_1.5.0            
 [93] stringi_1.8.7             UCSC.utils_1.0.0         
 [95] yaml_2.3.10               evaluate_1.0.3           
 [97] codetools_0.2-20          tcltk_4.4.3              
 [99] tibble_3.2.1              BiocManager_1.30.25      
[101] cli_3.6.4                 reticulate_1.42.0        
[103] munsell_0.5.1             processx_3.8.6           
[105] jquerylib_0.1.4           Rcpp_1.0.14              
[107] doSNOW_1.0.20             png_0.1-8                
[109] blob_1.2.4                sparseMatrixStats_1.16.0 
[111] viridisLite_0.4.2         scales_1.3.0             
[113] purrr_1.0.4               crayon_1.5.3             
[115] rlang_1.1.5               KEGGREST_1.44.1