Last updated: 2025-04-13

Checks: 6 1

Knit directory: KODAMA-Analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240618) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5f5ac63. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  KODAMA.svg
    Untracked:  analysis/singlecell_datamatrix.Rmd
    Untracked:  analysis/singlecell_seurat.Rmd
    Untracked:  code/Acinar_Cell_Carcinoma.ipynb
    Untracked:  code/Adenocarcinoma.ipynb
    Untracked:  code/Adjacent_normal_section.ipynb
    Untracked:  code/DLFPC_preprocessing.R
    Untracked:  code/DLPFC - BANKSY.R
    Untracked:  code/DLPFC - BASS.R
    Untracked:  code/DLPFC - BAYESPACE.R
    Untracked:  code/DLPFC - Nonspatial.R
    Untracked:  code/DLPFC - PRECAST.R
    Untracked:  code/DLPFC_comparison.R
    Untracked:  code/DLPFC_results_analysis.R
    Untracked:  code/MERFISH - BANKSY.R
    Untracked:  code/MERFISH - BASS.R
    Untracked:  code/MERFISH - BAYESPACE.R
    Untracked:  code/MERFISH - Nonspatial.R
    Untracked:  code/MERFISH - PRECAST.R
    Untracked:  code/MERFISH_comparison.R
    Untracked:  code/MERFISH_results_analysis.R
    Untracked:  code/VisiumHD-CRC.ipynb
    Untracked:  code/VisiumHDassignment.py
    Untracked:  code/deep learning code DLPFC.R
    Untracked:  code/save tiles.py
    Untracked:  data/Adenocarcinoma.csv
    Untracked:  data/Annotations/
    Untracked:  data/DLFPC-Br5292-input.RData
    Untracked:  data/DLFPC-Br5595-input.RData
    Untracked:  data/DLFPC-Br8100-input.RData
    Untracked:  data/DLPFC-general.RData
    Untracked:  data/MERFISH-input.RData
    Untracked:  data/spots_classification_ALL.csv
    Untracked:  data/spots_classification_Acinar_Cell_Carcinoma.csv
    Untracked:  data/spots_classification_IF.csv
    Untracked:  data/spots_classification_Normal_prostate.csv
    Untracked:  data/trajectories.RData
    Untracked:  data/trajectories_VISIUMHD.RData
    Untracked:  output/BANSKY-results.RData
    Untracked:  output/BASS-results.RData
    Untracked:  output/BayesSpace-results.RData
    Untracked:  output/CRC-image.RData
    Untracked:  output/CRC-image2.RData
    Untracked:  output/CRC.png
    Untracked:  output/CRC2.png
    Untracked:  output/CRC7.png
    Untracked:  output/CRC8.png
    Untracked:  output/CRC_boxplot.png
    Untracked:  output/CRC_boxplot.svg
    Untracked:  output/CRC_boxplot2.svg
    Untracked:  output/CRC_linee.svg
    Untracked:  output/DL.RData
    Untracked:  output/DLFPC-All-2.RData
    Untracked:  output/DLFPC-All.RData
    Untracked:  output/DLFPC-Br5292.RData
    Untracked:  output/DLFPC-Br5595.RData
    Untracked:  output/DLFPC-Br8100.RData
    Untracked:  output/DLFPC-variablesXdeeplearning.RData
    Untracked:  output/DLPFC-BANSKY-results.RData
    Untracked:  output/DLPFC-BASS-results.RData
    Untracked:  output/DLPFC-BayesSpace-results.RData
    Untracked:  output/DLPFC-Nonspatial-results.RData
    Untracked:  output/DLPFC-PRECAST-results.RData
    Untracked:  output/DLPFC_all_cluster.svg
    Untracked:  output/DLPFCpathway.RData
    Untracked:  output/Figure 1 - boxplot.pdf
    Untracked:  output/Figure 2 - DLPFC 10.pdf
    Untracked:  output/Figures/
    Untracked:  output/KODAMA-results.RData
    Untracked:  output/KODAMA_DLPFC_All_original.svg
    Untracked:  output/KODAMA_DLPFC_Br5595.svg
    Untracked:  output/KODAMA_DLPFC_Br5595_slide.svg
    Untracked:  output/Loupe.csv
    Untracked:  output/MERFISH-BANSKY-results.RData
    Untracked:  output/MERFISH-BASS-results.RData
    Untracked:  output/MERFISH-BayesSpace-results.RData
    Untracked:  output/MERFISH-KODAMA-results.RData
    Untracked:  output/MERFISH-Nonspatial-results.RData
    Untracked:  output/MERFISH-PRECAST-results.RData
    Untracked:  output/MERFISH.RData
    Untracked:  output/Nonspatial-results.RData
    Untracked:  output/Prostate.RData
    Untracked:  output/VisiumHD-RNA.RData
    Untracked:  output/VisiumHD-genes.pdf
    Untracked:  output/VisiumHD.RData
    Untracked:  output/boh.svg
    Untracked:  output/desmoplastic_distance_carcinoma.csv
    Untracked:  output/image.RData
    Untracked:  output/pp.RData
    Untracked:  output/pp2.RData
    Untracked:  output/pp3.RData
    Untracked:  output/pp4.RData
    Untracked:  output/pp5.RData
    Untracked:  output/prostate1.svg
    Untracked:  output/prostate2.svg
    Untracked:  output/prostate3.svg
    Untracked:  output/prostate4.svg
    Untracked:  output/prostate5.svg
    Untracked:  output/prostate6.svg
    Untracked:  output/prostate7.svg
    Untracked:  output/subclusters1.csv
    Untracked:  output/subclusters2.csv
    Untracked:  output/subclusters3.csv
    Untracked:  output/tight_boundary.geojson
    Untracked:  output/trajectory.csv

Unstaged changes:
    Deleted:    analysis/D1.Rmd
    Deleted:    analysis/DLPFC-12.Rmd
    Deleted:    analysis/DLPFC-4.Rmd
    Modified:   analysis/DLPFC.Rmd
    Deleted:    analysis/DLPFC1.Rmd
    Deleted:    analysis/DLPFC10.Rmd
    Deleted:    analysis/DLPFC2.Rmd
    Deleted:    analysis/DLPFC3.Rmd
    Deleted:    analysis/DLPFC4.Rmd
    Deleted:    analysis/DLPFC5.Rmd
    Deleted:    analysis/DLPFC6.Rmd
    Deleted:    analysis/DLPFC7.Rmd
    Deleted:    analysis/DLPFC8.Rmd
    Deleted:    analysis/DLPFC9.Rmd
    Deleted:    analysis/Du1.Rmd
    Deleted:    analysis/Du10.Rmd
    Deleted:    analysis/Du11.Rmd
    Deleted:    analysis/Du12.Rmd
    Deleted:    analysis/Du13.Rmd
    Deleted:    analysis/Du14.Rmd
    Deleted:    analysis/Du15.Rmd
    Deleted:    analysis/Du16.Rmd
    Deleted:    analysis/Du17.Rmd
    Deleted:    analysis/Du18.Rmd
    Deleted:    analysis/Du19.Rmd
    Deleted:    analysis/Du2.Rmd
    Deleted:    analysis/Du20.Rmd
    Deleted:    analysis/Du3.Rmd
    Deleted:    analysis/Du4.Rmd
    Deleted:    analysis/Du5.Rmd
    Deleted:    analysis/Du6.Rmd
    Deleted:    analysis/Du7.Rmd
    Deleted:    analysis/Du8.Rmd
    Deleted:    analysis/Du9.Rmd
    Modified:   analysis/Giotto.Rmd
    Modified:   analysis/MERFISH.Rmd
    Deleted:    analysis/MERFISH1a (copy).Rmd
    Deleted:    analysis/MERFISH1a.Rmd
    Deleted:    analysis/MERFISH1b (copy).Rmd
    Deleted:    analysis/MERFISH1b.Rmd
    Deleted:    analysis/MERFISH2a (copy).Rmd
    Deleted:    analysis/MERFISH2a.Rmd
    Deleted:    analysis/MERFISH2b (copy).Rmd
    Deleted:    analysis/MERFISH2b.Rmd
    Deleted:    analysis/MERFISH3a (copy).Rmd
    Deleted:    analysis/MERFISH3a.Rmd
    Deleted:    analysis/MERFISH3b (copy).Rmd
    Deleted:    analysis/MERFISH3b.Rmd
    Deleted:    analysis/MERFISH4a (copy).Rmd
    Deleted:    analysis/MERFISH4a.Rmd
    Deleted:    analysis/MERFISH4b (copy).Rmd
    Deleted:    analysis/MERFISH4b.Rmd
    Modified:   analysis/Prostate.Rmd
    Deleted:    analysis/STARmap.Rmd
    Modified:   analysis/Seurat.Rmd
    Deleted:    analysis/Simulation.Rmd
    Deleted:    analysis/Single-cell.Rmd
    Modified:   analysis/SpatialExperiment.Rmd
    Modified:   analysis/VisiumHD.Rmd
    Modified:   code/VisiumHD_CRC_download.sh
    Deleted:    data/Pathology.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/MERFISH.Rmd) and HTML (docs/MERFISH.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 74c3d1e Stefano Cacciatore 2025-01-10 Start my new project
html 432fc49 Stefano Cacciatore 2025-01-10 Build site.
Rmd 52e75ec Stefano Cacciatore 2025-01-10 Start my new project
html 2c6734f Stefano Cacciatore 2024-09-05 Build site.
Rmd 6565005 Stefano Cacciatore 2024-09-05 Start my new project
html d1192e9 Stefano Cacciatore 2024-08-12 Build site.
html 3374e66 Stefano Cacciatore 2024-08-06 Build site.
Rmd d5e7c3c Stefano Cacciatore 2024-08-05 Start my new project
html 35ce733 Stefano Cacciatore 2024-08-03 Build site.
html 82fe167 Stefano Cacciatore 2024-07-24 Build site.
html 6f7daac Stefano Cacciatore 2024-07-19 Build site.
html 7be8f59 tkcaccia 2024-07-15 updates
Rmd f8ca54a tkcaccia 2024-07-14 update
html f8ca54a tkcaccia 2024-07-14 update
Rmd 0638f93 GitHub 2024-07-08 Update MERFISH.Rmd
html d3de9e1 GitHub 2024-07-08 Update MERFISH.html
html 32f206e GitHub 2024-07-08 Update MERFISH.html
html 940ec13 GitHub 2024-07-04 Update MERFISH.html
Rmd 9ee53df GitHub 2024-06-26 Update MERFISH.Rmd
html 35e8f25 Stefano Cacciatore 2024-06-26 Update docs with MERFISH.html
Rmd c3eee75 GitHub 2024-06-26 Update MERFISH.Rmd
Rmd e7ddec6 GitHub 2024-06-26 Update MERFISH.Rmd
Rmd eb29180 GitHub 2024-06-26 Update MERFISH.Rmd
Rmd bd1988e GitHub 2024-06-26 Update MERFISH.Rmd
Rmd 911564c GitHub 2024-06-26 Update MERFISH.Rmd
Rmd 246f0bd GitHub 2024-06-25 Update MERFISH.Rmd
html 20a6dac Stefano Cacciatore 2024-06-25 Update docs with MERFISH.html
Rmd e56c4ff GitHub 2024-06-20 Update MERFISH.Rmd
Rmd 9df203d GitHub 2024-06-20 Update MERFISH.Rmd
Rmd be3cdeb GitHub 2024-06-20 Update MERFISH.Rmd
Rmd 2e7fa5e GitHub 2024-06-20 Update MERFISH.Rmd
Rmd a21b903 GitHub 2024-06-20 Update MERFISH.Rmd
html ee4ee17 GitHub 2024-06-19 Add files via upload
Rmd 615fc05 GitHub 2024-06-19 Add files via upload

Introduction

Here, we apply KODAMA to analyze the spatial transcriptomic data that measured the mouse preoptic region of the hypothalamus using the MERFISH technology from Moffitt et al., 2018. Link to study. We focus on the tissue sections Bregma -0.04, -0.09, -0.14, -0.19, and -0.24 mm from a consecutive brain hypothalamic region of animal 1. Data was retrieved from the BASS GitHub repository The original data can be downloaded from Dryad.

Loading and Preprocessing Data

The R library are loaded and the number of parallel computation is set.

# Load the necessary libraries
library(rgl)
library(irlba)
library(KODAMAextra)
library(scater)
library(SPARK)
library(ggplot2)
library(plotly)
library(mclust)
library(harmony)
library(bluster)
library(igraph)

n.cores=16

The spatial ttranscriptomic data and relative spatial coordinates are loaded in the R environment.

# Load the MERFISH data
load("../MERFISH_Animal1.RData")

cols <- c("#669bbc", "#81b29a", "#f2cc8f", "#adc178",
          "#dde5b6", "#a8dadc", "#e5989b", "#e07a5f",
          "#aae5b6", "#a8aadc", "#e59811", "#aa7900")

# Define the slides to be analyzed
slides <- c("-0.04", "-0.09", "-0.14", "-0.19", "-0.24")

# Initialize variables
xyz <- NULL
tissue_segments <- NULL
cell_type <- NULL
RNA <- NULL

# Extract spatial and expression data from each slide
for (i in slides) {
  x <- info_mult[[i]]$x / 1000
  y <- info_mult[[i]]$y / 1000
  z <- as.numeric(i)
  slide_xyz <- cbind(x - min(x), y - min(y), z)
  xyz <- rbind(xyz, slide_xyz)
  tissue_segments <- c(tissue_segments, info_mult[[i]]$z)
  cell_type <- c(cell_type, info_mult[[i]]$Cell_class)
  RNA <- rbind(RNA, t(cnts_mult[[i]]))
}

# Normalize RNA counts
RNA <- t(normalizeCounts(t(RNA), log = TRUE))

# Convert tissue segments to factor with defined levels
tissue_segments <- factor(tissue_segments, levels = c("V3", "BST", "fx", "MPA", "MPN", "PV", "PVH", "PVT"))

# Convert xyz to numeric matrix
xyz <- matrix(as.numeric(as.matrix(xyz)), ncol = ncol(xyz))

Identifying Differentially Expressed Genes

Genes are ranked using the SPARK-X algorithm independently for each slide. The top gene are the spatially expressed genes.

top=multi_SPARKX(RNA,xyz[,-3],as.factor(xyz[,3]),n.cores = n.cores)

Passing message

The gene expression value are processed using the passing-message function.

RNA.PM=passing.message(RNA[,top[1:100]],xyz)

Dimensionality reduction

The dimensionality of the dataset is reduced using the principal component analysis (PCA) and batch-effect is removed using the harmony function.

RNA.PM.scaled=scale(RNA.PM)
pca_results <- irlba(A = RNA.PM.scaled, nv = 50)
pca.PM <- pca_results$u %*% diag(pca_results$d)

pca.PM=RunHarmony(pca.PM,data.frame(z=xyz[,3]),"z")


RNA.scaled=scale(RNA[,top[1:100]])
pca_results <- irlba(A = RNA.scaled, nv = 50)
pca <- pca_results$u %*% diag(pca_results$d)


par(mfrow = c(1, 2))
plot(pca, col = cols[tissue_segments], main = "PCA",pch=20,xlab="PC1",ylab="PC2")
plot(pca.PM, col = cols[tissue_segments], main = "PCA.PM",pch=20,xlab="PC1",ylab="PC2")

Version Author Date
432fc49 Stefano Cacciatore 2025-01-10
3374e66 Stefano Cacciatore 2024-08-06
6f7daac Stefano Cacciatore 2024-07-19
f8ca54a tkcaccia 2024-07-14
20a6dac Stefano Cacciatore 2024-06-25

Applying KODAMA

KODAMA is performed of the first 20 principal components of PCA.

# Apply KODAMA to the PCA results
jj=KODAMA.matrix.parallel(pca.PM[,1:20],
                          spatial = xyz,
                          landmarks = 100000,
                          n.cores=n.cores,
                          seed = 543210)
Calculating Network

Calculating Network spatial
socket cluster with 16 nodes on host 'localhost'
================================================================================
Finished parallel computation

[1] "Calculation of dissimilarity matrix..."
================================================================================
config=umap.defaults
config$n_neighbors=30
config$n_threads = n.cores
vis <- KODAMA.visualization(jj, method = "UMAP",config=config)

Clustering and Refinement

A louvain clustering is performed.

g <- makeSNNGraph(as.matrix(vis), k = 100)
clu= louvain(g,ncluster = 8)$membership
[1] 0 1
[1] 0.2 8.0
ref=refine_SVM(xyz,clu,cost=1000)
[1] "1"
[1] 0.4927165 0.6436110 0.5047492 0.6667729 0.6808519

# 3D Visualization of Slice -0.14

library(rgl)
library(MASS)
library(misc3d)

volume_rendering(xyz[!is.na(ref),],ref[!is.na(ref)],selection = c("3","7","8","6"),alpha = c(0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8) ,colors = cols,cells=c(20, 20, 20),level=exp(2.4))

sessionInfo()
R version 4.4.3 (2025-02-28)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 20.04.6 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats4    parallel  stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] BayesSpace_1.14.0           Seurat_5.2.1               
 [3] SeuratObject_5.0.2          sp_2.2-0                   
 [5] PRECAST_1.6.6               ProFAST_1.6                
 [7] gtools_3.9.5                SpatialExperiment_1.14.0   
 [9] Banksy_1.0.0                BASS_1.1.0.017             
[11] GIGrvg_0.8                  misc3d_0.9-1               
[13] MASS_7.3-65                 igraph_2.1.4               
[15] bluster_1.14.0              harmony_1.2.3              
[17] Rcpp_1.0.14                 mclust_6.1.1               
[19] plotly_4.10.4               SPARK_1.1.1                
[21] scater_1.32.1               ggplot2_3.5.1              
[23] scuttle_1.14.0              SingleCellExperiment_1.26.0
[25] SummarizedExperiment_1.34.0 Biobase_2.64.0             
[27] GenomicRanges_1.56.2        GenomeInfoDb_1.40.1        
[29] IRanges_2.38.1              S4Vectors_0.42.1           
[31] BiocGenerics_0.50.0         MatrixGenerics_1.16.0      
[33] matrixStats_1.5.0           KODAMAextra_1.2            
[35] e1071_1.7-16                doParallel_1.0.17          
[37] iterators_1.0.14            foreach_1.5.2              
[39] KODAMA_3.0                  umap_0.2.10.0              
[41] Rtsne_0.17                  minerva_1.5.10             
[43] irlba_2.3.5.1               Matrix_1.7-3               
[45] rgl_1.3.18                  workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] DirichletReg_0.7-1        goftest_1.2-3            
  [3] vctrs_0.6.5               spatstat.random_3.3-3    
  [5] digest_0.6.37             png_0.1-8                
  [7] proxy_0.4-27              git2r_0.33.0             
  [9] ggrepel_0.9.6             deldir_2.0-4             
 [11] parallelly_1.43.0         combinat_0.0-8           
 [13] Rnanoflann_0.0.3          magick_2.8.6             
 [15] reshape2_1.4.4            GiRaF_1.0.1              
 [17] httpuv_1.6.15             withr_3.0.2              
 [19] xfun_0.51                 ggpubr_0.6.0             
 [21] survival_3.8-3            memoise_2.0.1            
 [23] ggbeeswarm_0.7.2          zoo_1.8-13               
 [25] pbapply_1.7-2             Formula_1.2-5            
 [27] promises_1.3.2            httr_1.4.7               
 [29] rstatix_0.7.2             rhdf5filters_1.16.0      
 [31] globals_0.16.3            fitdistrplus_1.2-2       
 [33] rhdf5_2.48.0              ps_1.9.0                 
 [35] rstudioapi_0.17.1         UCSC.utils_1.0.0         
 [37] miniUI_0.1.1.1            generics_0.1.3           
 [39] base64enc_0.1-3           processx_3.8.6           
 [41] curl_6.2.2                zlibbioc_1.50.0          
 [43] ScaledMatrix_1.12.0       polyclip_1.10-7          
 [45] doSNOW_1.0.20             GenomeInfoDbData_1.2.12  
 [47] SparseArray_1.4.8         xtable_1.8-4             
 [49] stringr_1.5.1             pracma_2.4.4             
 [51] evaluate_1.0.3            S4Arrays_1.4.1           
 [53] BiocFileCache_2.12.0      colorspace_2.1-1         
 [55] filelock_1.0.3            ROCR_1.0-11              
 [57] reticulate_1.42.0         spatstat.data_3.1-6      
 [59] magrittr_2.0.3            lmtest_0.9-40            
 [61] later_1.4.1               viridis_0.6.5            
 [63] lattice_0.22-7            spatstat.geom_3.3-6      
 [65] future.apply_1.11.3       getPass_0.2-4            
 [67] scattermore_1.2           cowplot_1.1.3            
 [69] RcppAnnoy_0.0.22          class_7.3-23             
 [71] pillar_1.10.1             nlme_3.1-168             
 [73] compiler_4.4.3            beachmat_2.20.0          
 [75] RSpectra_0.16-2           stringi_1.8.7            
 [77] tensor_1.5                plyr_1.8.9               
 [79] crayon_1.5.3              abind_1.4-8              
 [81] locfit_1.5-9.12           bit_4.6.0                
 [83] sandwich_3.1-1            dplyr_1.1.4              
 [85] whisker_0.4.1             codetools_0.2-20         
 [87] BiocSingular_1.20.0       openssl_2.3.2            
 [89] bslib_0.9.0               DR.SC_3.5                
 [91] mime_0.13                 splines_4.4.3            
 [93] fastDummies_1.7.5         dbplyr_2.5.0             
 [95] sparseMatrixStats_1.16.0  maxLik_1.5-2.1           
 [97] knitr_1.50                blob_1.2.4               
 [99] fs_1.6.5                  listenv_0.9.1            
[101] label.switching_1.8       DelayedMatrixStats_1.26.0
[103] ggsignif_0.6.4            RcppHungarian_0.3        
[105] tibble_3.2.1              statmod_1.5.0            
[107] callr_3.7.6               lpSolve_5.6.23           
[109] pkgconfig_2.0.3           tools_4.4.3              
[111] cachem_1.1.0              aricode_1.0.3            
[113] RhpcBLASctl_0.23-42       RSQLite_2.3.9            
[115] viridisLite_0.4.2         DBI_1.2.3                
[117] fastmap_1.2.0             rmarkdown_2.29           
[119] scales_1.3.0              grid_4.4.3               
[121] ica_1.0-3                 broom_1.0.8              
[123] sass_0.4.9                coda_0.19-4.1            
[125] patchwork_1.3.0           dotCall64_1.2            
[127] carData_3.0-5             RANN_2.6.2               
[129] snow_0.4-4                farver_2.1.2             
[131] yaml_2.3.10               ggthemes_5.1.0           
[133] cli_3.6.4                 purrr_1.0.4              
[135] lifecycle_1.0.4           dbscan_1.2.2             
[137] askpass_1.2.1             uwot_0.2.3               
[139] backports_1.5.0           BiocParallel_1.38.0      
[141] gtable_0.3.6              rjson_0.2.23             
[143] ggridges_0.5.6            progressr_0.15.1         
[145] limma_3.60.6              edgeR_4.2.2              
[147] jsonlite_2.0.0            miscTools_0.6-28         
[149] RcppHNSW_0.6.0            bitops_1.0-9             
[151] xgboost_1.7.9.1           bit64_4.6.0-1            
[153] assertthat_0.2.1          spatstat.utils_3.1-3     
[155] BiocNeighbors_1.22.0      matlab_1.0.4.1           
[157] metapod_1.12.0            jquerylib_0.1.4          
[159] dqrng_0.4.1               spatstat.univar_3.1-2    
[161] lazyeval_0.2.2            shiny_1.10.0             
[163] htmltools_0.5.8.1         sctransform_0.4.1        
[165] glue_1.8.0                tcltk_4.4.3              
[167] spam_2.11-1               XVector_0.44.0           
[169] RCurl_1.98-1.17           rprojroot_2.0.4          
[171] scran_1.32.0              gridExtra_2.3            
[173] sccore_1.0.5              R6_2.6.1                 
[175] tidyr_1.3.1               CompQuadForm_1.4.3       
[177] labeling_0.4.3            cluster_2.1.8.1          
[179] Rhdf5lib_1.26.0           DelayedArray_0.30.1      
[181] tidyselect_1.2.1          vipor_0.4.7              
[183] car_3.1-3                 future_1.34.0            
[185] leidenAlg_1.1.4           rsvd_1.0.5               
[187] munsell_0.5.1             KernSmooth_2.23-26       
[189] furrr_0.3.1               data.table_1.17.0        
[191] htmlwidgets_1.6.4         RColorBrewer_1.1-3       
[193] rlang_1.1.5               spatstat.sparse_3.1-0    
[195] spatstat.explore_3.4-2    beeswarm_0.4.0