Last updated: 2025-04-14

Checks: 6 1

Knit directory: KODAMA-Analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240618) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5f5ac63. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  KODAMA.svg
    Untracked:  analysis/singlecell_datamatrix.Rmd
    Untracked:  analysis/singlecell_seurat.Rmd
    Untracked:  code/Acinar_Cell_Carcinoma.ipynb
    Untracked:  code/Adenocarcinoma.ipynb
    Untracked:  code/Adjacent_normal_section.ipynb
    Untracked:  code/DLFPC_preprocessing.R
    Untracked:  code/DLPFC - BANKSY.R
    Untracked:  code/DLPFC - BASS.R
    Untracked:  code/DLPFC - BAYESPACE.R
    Untracked:  code/DLPFC - Nonspatial.R
    Untracked:  code/DLPFC - PRECAST.R
    Untracked:  code/DLPFC_comparison.R
    Untracked:  code/DLPFC_results_analysis.R
    Untracked:  code/MERFISH - BANKSY.R
    Untracked:  code/MERFISH - BASS.R
    Untracked:  code/MERFISH - BAYESPACE.R
    Untracked:  code/MERFISH - Nonspatial.R
    Untracked:  code/MERFISH - PRECAST.R
    Untracked:  code/MERFISH_comparison.R
    Untracked:  code/MERFISH_results_analysis.R
    Untracked:  code/VisiumHD-CRC.ipynb
    Untracked:  code/VisiumHDassignment.py
    Untracked:  code/deep learning code DLPFC.R
    Untracked:  code/save tiles.py
    Untracked:  data/Annotations/
    Untracked:  data/DLFPC-Br5292-input.RData
    Untracked:  data/DLFPC-Br5595-input.RData
    Untracked:  data/DLFPC-Br8100-input.RData
    Untracked:  data/DLPFC-general.RData
    Untracked:  data/MERFISH-input.RData
    Untracked:  data/trajectories.RData
    Untracked:  data/trajectories_VISIUMHD.RData
    Untracked:  output/BANSKY-results.RData
    Untracked:  output/BASS-results.RData
    Untracked:  output/BayesSpace-results.RData
    Untracked:  output/CRC-image.RData
    Untracked:  output/CRC-image2.RData
    Untracked:  output/CRC.png
    Untracked:  output/CRC2.png
    Untracked:  output/CRC7.png
    Untracked:  output/CRC8.png
    Untracked:  output/CRC_boxplot.png
    Untracked:  output/CRC_boxplot.svg
    Untracked:  output/CRC_boxplot2.svg
    Untracked:  output/CRC_linee.svg
    Untracked:  output/DL.RData
    Untracked:  output/DLFPC-All-2.RData
    Untracked:  output/DLFPC-All.RData
    Untracked:  output/DLFPC-Br5292.RData
    Untracked:  output/DLFPC-Br5595.RData
    Untracked:  output/DLFPC-Br8100.RData
    Untracked:  output/DLFPC-variablesXdeeplearning.RData
    Untracked:  output/DLPFC-BANSKY-results.RData
    Untracked:  output/DLPFC-BASS-results.RData
    Untracked:  output/DLPFC-BayesSpace-results.RData
    Untracked:  output/DLPFC-Nonspatial-results.RData
    Untracked:  output/DLPFC-PRECAST-results.RData
    Untracked:  output/DLPFC_all_cluster.svg
    Untracked:  output/DLPFCpathway.RData
    Untracked:  output/Figure 1 - boxplot.pdf
    Untracked:  output/Figure 2 - DLPFC 10.pdf
    Untracked:  output/Figures/
    Untracked:  output/KODAMA-results.RData
    Untracked:  output/KODAMA_DLPFC_All_original.svg
    Untracked:  output/KODAMA_DLPFC_Br5595.svg
    Untracked:  output/KODAMA_DLPFC_Br5595_slide.svg
    Untracked:  output/Loupe.csv
    Untracked:  output/MERFISH-BANSKY-results.RData
    Untracked:  output/MERFISH-BASS-results.RData
    Untracked:  output/MERFISH-BayesSpace-results.RData
    Untracked:  output/MERFISH-KODAMA-results.RData
    Untracked:  output/MERFISH-Nonspatial-results.RData
    Untracked:  output/MERFISH-PRECAST-results.RData
    Untracked:  output/MERFISH.RData
    Untracked:  output/Nonspatial-results.RData
    Untracked:  output/Prostate-GSEA.csv
    Untracked:  output/Prostate-KODAMA.RData
    Untracked:  output/Prostate-trajectory.csv
    Untracked:  output/Prostate.RData
    Untracked:  output/VisiumHD-RNA.RData
    Untracked:  output/VisiumHD-genes.pdf
    Untracked:  output/VisiumHD.RData
    Untracked:  output/boh.svg
    Untracked:  output/desmoplastic_distance_carcinoma.csv
    Untracked:  output/image.RData
    Untracked:  output/pp.RData
    Untracked:  output/pp2.RData
    Untracked:  output/pp3.RData
    Untracked:  output/pp4.RData
    Untracked:  output/pp5.RData
    Untracked:  output/prostate1.svg
    Untracked:  output/prostate2.svg
    Untracked:  output/prostate3.svg
    Untracked:  output/subclusters1.csv
    Untracked:  output/subclusters2.csv
    Untracked:  output/subclusters3.csv
    Untracked:  output/tight_boundary.geojson
    Untracked:  output/trajectory.csv

Unstaged changes:
    Deleted:    analysis/D1.Rmd
    Deleted:    analysis/DLPFC-12.Rmd
    Deleted:    analysis/DLPFC-4.Rmd
    Modified:   analysis/DLPFC.Rmd
    Deleted:    analysis/DLPFC1.Rmd
    Deleted:    analysis/DLPFC10.Rmd
    Deleted:    analysis/DLPFC2.Rmd
    Deleted:    analysis/DLPFC3.Rmd
    Deleted:    analysis/DLPFC4.Rmd
    Deleted:    analysis/DLPFC5.Rmd
    Deleted:    analysis/DLPFC6.Rmd
    Deleted:    analysis/DLPFC7.Rmd
    Deleted:    analysis/DLPFC8.Rmd
    Deleted:    analysis/DLPFC9.Rmd
    Deleted:    analysis/Du1.Rmd
    Deleted:    analysis/Du10.Rmd
    Deleted:    analysis/Du11.Rmd
    Deleted:    analysis/Du12.Rmd
    Deleted:    analysis/Du13.Rmd
    Deleted:    analysis/Du14.Rmd
    Deleted:    analysis/Du15.Rmd
    Deleted:    analysis/Du16.Rmd
    Deleted:    analysis/Du17.Rmd
    Deleted:    analysis/Du18.Rmd
    Deleted:    analysis/Du19.Rmd
    Deleted:    analysis/Du2.Rmd
    Deleted:    analysis/Du20.Rmd
    Deleted:    analysis/Du3.Rmd
    Deleted:    analysis/Du4.Rmd
    Deleted:    analysis/Du5.Rmd
    Deleted:    analysis/Du6.Rmd
    Deleted:    analysis/Du7.Rmd
    Deleted:    analysis/Du8.Rmd
    Deleted:    analysis/Du9.Rmd
    Modified:   analysis/Giotto.Rmd
    Modified:   analysis/MERFISH.Rmd
    Deleted:    analysis/MERFISH1a (copy).Rmd
    Deleted:    analysis/MERFISH1a.Rmd
    Deleted:    analysis/MERFISH1b (copy).Rmd
    Deleted:    analysis/MERFISH1b.Rmd
    Deleted:    analysis/MERFISH2a (copy).Rmd
    Deleted:    analysis/MERFISH2a.Rmd
    Deleted:    analysis/MERFISH2b (copy).Rmd
    Deleted:    analysis/MERFISH2b.Rmd
    Deleted:    analysis/MERFISH3a (copy).Rmd
    Deleted:    analysis/MERFISH3a.Rmd
    Deleted:    analysis/MERFISH3b (copy).Rmd
    Deleted:    analysis/MERFISH3b.Rmd
    Deleted:    analysis/MERFISH4a (copy).Rmd
    Deleted:    analysis/MERFISH4a.Rmd
    Deleted:    analysis/MERFISH4b (copy).Rmd
    Deleted:    analysis/MERFISH4b.Rmd
    Modified:   analysis/Prostate.Rmd
    Deleted:    analysis/STARmap.Rmd
    Modified:   analysis/Seurat.Rmd
    Deleted:    analysis/Simulation.Rmd
    Deleted:    analysis/Single-cell.Rmd
    Modified:   analysis/SpatialExperiment.Rmd
    Modified:   analysis/VisiumHD.Rmd
    Modified:   code/VisiumHD_CRC_download.sh
    Deleted:    data/Pathology.csv
    Deleted:    data/merfish.Rmd
    Deleted:    data/vis.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Prostate.Rmd) and HTML (docs/Prostate.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 24f5fe4 Stefano Cacciatore 2025-01-08 Build site.
Rmd 2077f71 Stefano Cacciatore 2025-01-08 Start my new project
Rmd ff717c1 Stefano Cacciatore 2025-01-08 Start my new project
html a11cbcc Stefano Cacciatore 2024-09-14 Build site.
Rmd edbb375 Stefano Cacciatore 2024-09-14 Start my new project
html 460bb2d Stefano Cacciatore 2024-09-04 Build site.
Rmd 3040393 Stefano Cacciatore 2024-09-04 Start my new project
html ac43fcf Stefano Cacciatore 2024-09-02 Build site.
Rmd be96835 Stefano Cacciatore 2024-09-02 Start my new project
html 46cbd5a Stefano Cacciatore 2024-09-02 Build site.
Rmd 9cc4b2b Stefano Cacciatore 2024-09-02 Start my new project
html 202bc0e Stefano Cacciatore 2024-09-02 Build site.
Rmd b9309f4 Stefano Cacciatore 2024-09-02 Start my new project
html b1a5ea0 Stefano Cacciatore 2024-08-26 Build site.
Rmd 22e2ac6 Stefano Cacciatore 2024-08-26 Start my new project
html d1192e9 Stefano Cacciatore 2024-08-12 Build site.
html 3374e66 Stefano Cacciatore 2024-08-06 Build site.
html 35ce733 Stefano Cacciatore 2024-08-03 Build site.
html 82fe167 Stefano Cacciatore 2024-07-24 Build site.
html 6f7daac Stefano Cacciatore 2024-07-19 Build site.
Rmd 3f7aad6 Stefano Cacciatore 2024-07-19 Start my new project
Rmd 75d2c78 GitHub 2024-07-15 Update Prostate.Rmd
Rmd 95c6aaf GitHub 2024-07-15 Update Prostate.Rmd
html 7be8f59 tkcaccia 2024-07-15 updates
Rmd f8ca54a tkcaccia 2024-07-14 update
html f8ca54a tkcaccia 2024-07-14 update
Rmd 39586a6 GitHub 2024-07-12 Update Prostate.Rmd
html 60a4b0d GitHub 2024-07-12 Update Prostate.html
html 6660a41 GitHub 2024-07-12 Update Prostate.html
html b9679c8 GitHub 2024-07-12 Update Prostate.html
html 9b0bdad GitHub 2024-07-12 Update Prostate.html
html 4c71aaa GitHub 2024-07-12 Update Prostate.html
Rmd 4a7b4ca GitHub 2024-07-12 Update Prostate.Rmd
html d652bc6 GitHub 2024-07-08 Update Prostate.html
html cac859c GitHub 2024-07-04 Update Prostate.html
html ee4ee17 GitHub 2024-06-19 Add files via upload
Rmd 615fc05 GitHub 2024-06-19 Add files via upload

Introduction

The data used in this analysis come from the Visium database, a reference resource for spatial transcriptomics data. This database provides detailed information on gene expression in various tissue contexts, offering high-resolution spatial data.

For this tutorial, we focus on different types of prostate tissues, including normal prostate, adenocarcinoma, acinar cell carcinoma, and adjacent normal sections. These data are crucial for understanding the variations in gene expression between healthy and cancerous tissues and for identifying potential diagnostic and therapeutic markers.

The data can be downloaded using the following script: Prostate_download.sh. This script facilitates access to the raw data, which will then be preprocessed and analyzed in the subsequent steps of our pipeline.

Preprocessing

This section details the preprocessing of spatial transcriptomics data, which is a crucial step for cleaning and preparing the data for further analysis.

Loading Libraries and Defining Tissue Types

library(SpatialExperiment)
library(scater)
library(nnSVG)
library(SPARK)
library(harmony)
library(scuttle)
library(BiocSingular)
library(spatialLIBD)
library(KODAMAextra)
opar <- par()      # make a copy of current settings


tissues <- c("Normal_prostate",
             "Acinar_Cell_Carcinoma",
             "Adjacent_normal_section",
             "Adenocarcinoma")
n.cores=12

Begin by loading the necessary libraries for the analysis. Next, define the different types of prostate tissues to be studied: normal prostate, acinar cell carcinoma, adjacent normal sections, and adenocarcinoma.

Reading Visium Data

dir <- "../Prostate/"
address <- file.path(dir, tissues, "")

spe <- read10xVisium(address, tissues,
                     type = "sparse", data = "raw",
                     images = "lowres", load = FALSE)
rownames(colData(spe))=paste(gsub("-1","",rownames(colData(spe))),colData(spe)$sample_id,sep="-")

Visualization

par(mfrow = c(1, 4))

img=as.raster(getImg(spe, sample_id = "Normal_prostate" , image_id = NULL))
plot(img)
box(col="#77cc66",lwd=3)
mtext("Normal prostate")

img=as.raster(getImg(spe, sample_id = "Acinar_Cell_Carcinoma" , image_id = NULL))
plot(img)
box(col="#77cc66",lwd=3)
mtext("Acinar cell carcinoma")

img=as.raster(getImg(spe, sample_id = "Adenocarcinoma" , image_id = NULL))
plot(img)
box(col="#77cc66",lwd=3)
mtext("Adenocarcinoma")

img=as.raster(getImg(spe, sample_id = "Adjacent_normal_section" , image_id = NULL))
plot(img)
box(col="#77cc66",lwd=3)
mtext("Adjacent Normal section with IF")

Version Author Date
24f5fe4 Stefano Cacciatore 2025-01-08
46cbd5a Stefano Cacciatore 2024-09-02
b1a5ea0 Stefano Cacciatore 2024-08-26
6f7daac Stefano Cacciatore 2024-07-19

Loading Pathology Data

To begin the pathology data analysis, load the corresponding pathology data for adenocarcinoma samples. Ensure to replace the file path with the correct location of your data.

ss <- read.csv("data/Annotations/Adenocarcinoma.csv")
annotation_Adenocarcinoma= ss[,2]
names(annotation_Adenocarcinoma)=ss[,1]
annotation_Adenocarcinoma=annotation_Adenocarcinoma[annotation_Adenocarcinoma!=""]
names(annotation_Adenocarcinoma)=paste(gsub("-1","",names(annotation_Adenocarcinoma)),"Adenocarcinoma",sep="-")
annotation_Acinar_Cell_Carcinoma=read_annotations("data/Annotations/spots_classification_Acinar_Cell_Carcinoma.csv")
names(annotation_Acinar_Cell_Carcinoma)=paste(gsub("-1","",names(annotation_Acinar_Cell_Carcinoma)),"Acinar_Cell_Carcinoma",sep="-")
annotation_Adjacent_normal_section=read_annotations("data/Annotations/spots_classification_IF.csv")
names(annotation_Adjacent_normal_section)=paste(gsub("-1","",names(annotation_Adjacent_normal_section)),"Adjacent_normal_section",sep="-")
annotation_Normal_Prostate=read_annotations("data/Annotations/spots_classification_Normal_prostate.csv")
names(annotation_Normal_Prostate)=paste(gsub("-1","",names(annotation_Normal_Prostate)),"Normal_prostate",sep="-")

annotations = c(annotation_Normal_Prostate,
                annotation_Acinar_Cell_Carcinoma,
                annotation_Adjacent_normal_section,
                annotation_Adenocarcinoma)

Loading Preprocessed Data

metaData <- SingleCellExperiment::colData(spe)
expr <- SingleCellExperiment::counts(spe)
sample_names <- unique(colData(spe)$sample_id)

Load the preprocessed data and extract the metadata and gene expression counts.

Filtering Tissue Spots and Identifying Mitochondrial Genes

spe <- spe[, colData(spe)$in_tissue]

# Identify mitochondrial genes
is_mito <- grepl("(^MT-)|(^mt-)", rowData(spe)$gene_name)

Filter the spots located in the tissue and identify mitochondrial genes, which are often used as quality indicators.

Calculating Quality Control (QC) Metrics per Spot

# Calculate per-spot QC metrics
spe <- addPerCellQC(spe, subsets = list(mito = is_mito))

# Select QC thresholds
qc_lib_size <- colData(spe)$sum < 500
qc_detected <- colData(spe)$detected < 250
qc_mito <- colData(spe)$subsets_mito_percent > 30
qc_cell_count <- colData(spe)$cell_count > 12

# Spots to discard
discard <- qc_lib_size | qc_detected | qc_mito | qc_cell_count

if (length(discard) > 0) {
  table(discard)
  colData(spe)$discard <- discard
  
  # Filter low-quality spots
  spe <- spe[, !colData(spe)$discard]
}
dim(spe)
[1] 36945 13417

Calculate several QC metrics per spot, such as library size, number of detected genes, percentage of mitochondrial genes, and cell count. Define thresholds for these metrics and filter out low-quality spots.

Filtering Genes

colnames(rowData(spe)) <- "gene_name"

spe <- filter_genes(
  spe,
  filter_genes_ncounts = 2,   # Minimum counts
  filter_genes_pcspots = 0.5, # Minimum percentage of spots
  filter_mito = TRUE          # Filter mitochondrial genes
)

dim(spe)
[1] 12527 13417

Filter genes based on the number of counts and the percentage of spots in which they are present. Mitochondrial genes are also filtered out.

Normalizing Counts

spe <- computeLibraryFactors(spe)
spe <- logNormCounts(spe)

normalize the counts using library size factors and apply a logarithmic transformation to obtain data ready for more precise analysis.

This preprocessing process cleans and normalizes the spatial transcriptomics data, ensuring high-quality data ready for subsequent analyses.

Feature Selection with SPARK

After preprocessing the data, the next step involves feature selection using SPARK, which is crucial for identifying significant genes across different tissue samples.

top=multi_SPARKX(spe,n.cores=n.cores)

Principal Component Analysis (PCA)

After feature selection, principal component analysis (PCA) is performed to explore the variance in the dataset and visualize sample relationships.

samples=as.factor(colData(spe)$sample_id)
xy=as.matrix(spatialCoords(spe))
rownames(xy)=rownames(colData(spe))
data=as.matrix(t(logcounts(spe)))
gene_names=spe@rowRanges@elementMetadata$gene_name
gene_ids=names(spe@rowRanges)
colnames(data)=gene_names
names(gene_names)=gene_ids

top_genes=gene_names[top[1:2000]]
library(ggplot2)
cols_tissue <- c("#0000b6cc", "#81b29acc", "#f2cc8fcc","#e07a5fcc")






# Run PCA with top selected genes
spe <- runPCA(spe, subset_row = top[1:2000], scale = TRUE)

# Run Harmony to adjust for batch effects
spe <- RunHarmony(spe, group.by.vars = "sample_id", lambda = NULL)

# Visualize PCA and Harmony results
df <- data.frame(reducedDim(spe,type = "PCA")[,1:2], tissue=samples)
plot1 = ggplot(df, aes(PC1, PC2, color = tissue)) +labs(title="PCA") +
  geom_point(size = 2) +
  theme_bw() + theme(legend.position = "bottom")+
  scale_color_manual("Domain", values = cols_tissue) +
  guides(color = guide_legend(nrow = 2, 
                              override.aes = list(size = 2)))

df <- data.frame(reducedDim(spe,type = "HARMONY")[,1:2], tissue=samples)
plot2 = ggplot(df, aes(HARMONY_1, HARMONY_2, color = tissue)) +labs(title="PCA") +
  geom_point(size = 2) +
  theme_bw() + theme(legend.position = "bottom")+
  scale_color_manual("Domain", values = cols_tissue) +
  guides(color = guide_legend(nrow = 2, 
                              override.aes = list(size = 2)))


pca=reducedDim(spe,type = "HARMONY")[,1:50]

plot1

Version Author Date
b1a5ea0 Stefano Cacciatore 2024-08-26
6f7daac Stefano Cacciatore 2024-07-19
plot2

Version Author Date
b1a5ea0 Stefano Cacciatore 2024-08-26
6f7daac Stefano Cacciatore 2024-07-19
svg("output/Figures/Prostate/prostate1.svg",height = 3)
plot1
dev.off()
png 
  2 
svg("output/Figures/Prostate/prostate2.svg",height = 3)
plot2
dev.off()
png 
  2 

Processing Pathology Data

The processing involves creating row names and associating pathology information with the corresponding columns in the spe object.

annotations=annotations[rownames(colData(spe))]
annotations[annotations=="fibrous"]="fibromuscular"
names(annotations)=rownames(colData(spe))

Visualization of Pathology Data

Assign specific colors to each pathology category and visualize the samples on a reduced dimension map (HARMONY), with each point colored according to its pathology category.

cols_pathology <- c("#0000ffcc", "#e41a1ccc", "#006400cc", "#000000cc", "#ffd700cc", 
                    "#00ff00cc", "#b2dfeecc","#669bbccc", "#81b29acc", "#f2cc8fcc",
                    "#adc178cc", "#aa1133cc", "#1166dccc", "#e5989bcc", "#e07a5fcc")


df <- data.frame(pca[,1:2], tissue=annotations)
df=df[!is.na(annotations),]
plot3=ggplot(df, aes(HARMONY_1, HARMONY_2, color = tissue)) +labs(title="PCA") +
  geom_point(size = 2) +
  theme_bw() + theme(legend.position = "bottom")+
  scale_color_manual("Domain", values = cols_pathology) +
  guides(color = guide_legend(nrow = 2, 
                              override.aes = list(size = 2)))
svg("output/Figures/Prostate/prostate3.svg",height = 3)
plot3
dev.off()
png 
  2 

Running KODAMA for Analysis

The next step is running KODAMA, a method for dimensionality reduction and visualization.

spe=RunKODAMAmatrix(spe,
                          reduction = "HARMONY",
                          FUN= "fastpls" ,
                          landmarks = 100000,
                          splitting = 300,
                          ncomp = 50,
                          spatial.resolution = 0.3,
                          n.cores=n.cores,
                          seed = 543210)
Calculating Network

Calculating Network spatial
socket cluster with 12 nodes on host 'localhost'
================================================================================
Finished parallel computation

[1] "Calculation of dissimilarity matrix..."
================================================================================
config <- umap.defaults
config$n_threads = n.cores
config$n_sgd_threads = "auto"

spe=RunKODAMAvisualization(spe,method="UMAP",config=config)


save(spe,file="output/Prostate-KODAMA.RData")


df <- data.frame(reducedDim(spe,type = "KODAMA")[,1:2], tissue=as.factor(colData(spe)$sample_id))
plot4=ggplot(df, aes(Dimension.1, Dimension.2, color = tissue)) +labs(title="KODAMA") +
  geom_point(size = 2) +
  theme_bw() + theme(legend.position = "bottom")+
  scale_color_manual("Domain", values = cols_tissue) +
  guides(color = guide_legend(nrow = 2, 
                              override.aes = list(size = 2)))




df <- data.frame(reducedDim(spe,type = "KODAMA")[,1:2], tissue=annotations)
plot5=ggplot(df, aes(Dimension.1, Dimension.2, color = tissue)) +labs(title="KODAMA") +
  geom_point(size = 2) +
  theme_bw() + theme(legend.position = "bottom")+
  scale_color_manual("Domain", values = cols_pathology) +
  guides(color = guide_legend(nrow = 3, 
                              override.aes = list(size = 2)))
plot4

Version Author Date
b1a5ea0 Stefano Cacciatore 2024-08-26
6f7daac Stefano Cacciatore 2024-07-19
4ca7eda GitHub 2024-07-12
fe5a2ba GitHub 2024-07-12
plot5

Version Author Date
b1a5ea0 Stefano Cacciatore 2024-08-26
6f7daac Stefano Cacciatore 2024-07-19
b8fa0b8 GitHub 2024-07-12
fe5a2ba GitHub 2024-07-12
svg("output/Figures/Prostate/prostate4.svg",height = 6,width = 10)
plot4
dev.off()
png 
  2 
svg("output/Figures/Prostate/prostate5.svg",height = 6,width = 10)
plot5
dev.off()
png 
  2 

Clustering

ko=reducedDim(spe,type = "KODAMA")
g <- bluster::makeSNNGraph(as.matrix(ko), k = 50)
g_walk <- igraph::cluster_louvain(g,resolution = 0.2)
clu = g_walk$membership

table(clu,annotations)
    annotations
clu  benign blood vessel fibromuscular Gleason 3 Gleason 4 Gleason 5
  1       0            0             5         0         0         0
  2       0           19           710         0         0         0
  3       0            0            54         0         0         0
  4       0           21            85         0         0         0
  5       0            4             0         0         0         0
  6      24            0            11        78        57         0
  7       0            0             4         0         0         0
  8      42            0            99        42        77        70
  9       1            0            30         0         0         0
  10      2            0             3         0         0         0
    annotations
clu  hyperplasia gland hyperplasia stroma immune cells Invasive carcinoma Nerve
  1                613                  9            0                  3     0
  2                  2                  1            8                  2    40
  3                  9                  3            0                  1     0
  4                  1                  3            0                  0     0
  5                 89                349            0                  0     0
  6                  0                  0            1                  2     0
  7                  0                  8            0                  0     0
  8                  0                  0           14                183     0
  9                  0                  0            0                564     0
  10                 0                  0            0               1187     0
    annotations
clu  normal gland normal stroma tumor stroma
  1           412             0            0
  2            53           819            0
  3          1017            33            0
  4           120           817            0
  5            16            64            0
  6             2             0            0
  7             2           293            0
  8             2             0           21
  9           106             0            0
  10            0             0            0
cols_cluster <- c("#0000b6cc", "#81b29acc", "#f2cc8fcc","#e07a5fcc",
          "#cc00b6cc", "#81ccffcc", "#00cc8fcc","#e0aa5fcc",
          "#0088ddcc", "#33b233cc", "#aa228fcc","#aa7a6fcc")

df <- data.frame(reducedDim(spe, type = "KODAMA")[, 1:2], 
                 cluster = as.factor(clu), 
                 tissue = annotations,
                 sample= spe$sample_id)

df$cluster <- as.factor(df$cluster)

plot6 <- ggplot(df, aes(Dimension.1, Dimension.2, color = cluster)) +
    geom_point(size = 2) +
    geom_point(data = subset(df, tissue == "normal gland" & sample=="Adenocarcinoma"), 
               shape = 3, color = "#000000aa", stroke = 1, size = 2) +  # cross on top
    theme_bw() +
    theme(legend.position = "bottom") +
    scale_color_manual("Domain", values = cols_cluster) +
    guides(color = guide_legend(nrow = 2, override.aes = list(size = 2)))

plot6

Version Author Date
24f5fe4 Stefano Cacciatore 2025-01-08
a11cbcc Stefano Cacciatore 2024-09-14
46cbd5a Stefano Cacciatore 2024-09-02
plot7=plot_slide(xy,samples,as.factor(clu),nrow=1,col = cols_cluster)

plot6

Version Author Date
24f5fe4 Stefano Cacciatore 2025-01-08
a11cbcc Stefano Cacciatore 2024-09-14
46cbd5a Stefano Cacciatore 2024-09-02
plot7

svg("output/Figures/Prostate/prostate6.svg",height = 8,width = 10)
plot6
dev.off()
png 
  2 
svg("output/Figures/Prostate/prostate7.svg",height = 4,width = 10)
plot7
dev.off()
png 
  2 

Trajectory

par(opar)
sel=colData(spe)$sample_id=="Acinar_Cell_Carcinoma"
spe_sub=spe[,sel]
image=as.raster(imgData(spe_sub)$data[[1]])
xy_sel=spatialCoords(spe_sub)
xy_sel=xy_sel*scaleFactors(spe_sub)
xy_sel[,2]=nrow(image)-xy_sel[,2]


plot(image)
points(xy_sel,cex=0.5,pch=20,col="#33333333")

data_sub=as.matrix(t(logcounts(spe_sub)))
colnames(data_sub)=gene_names


# nn1=new_trajectory (xy_sel,data = data)
# nn2=new_trajectory (xy_sel,data = data)
# nn3=new_trajectory (xy_sel,data = data)


load("data/trajectories.RData")

mm1=new_trajectory (xy_sel,data = data_sub,trace=nn1$xy)
mm2=new_trajectory (xy_sel,data = data_sub,trace=nn2$xy)
mm3=new_trajectory (xy_sel,data = data_sub,trace=nn3$xy)

Version Author Date
ac43fcf Stefano Cacciatore 2024-09-02
46cbd5a Stefano Cacciatore 2024-09-02
traj=rbind(mm1$trajectory,
           mm2$trajectory,
           mm3$trajectory)
traj=traj[,top_genes]
y=rep(1:20,3)

ma=multi_analysis(traj,y,FUN="correlation.test",method="spearman")

ma=ma[order(as.numeric(ma$`p-value`)),]

ma[1:20,]
      Feature   rho  p-value      FDR
270      SAA2  0.85 1.01e-17 2.02e-14
940      NNMT  0.81 6.97e-15 6.96e-12
1743  LAMTOR5 -0.80 2.24e-14 1.49e-11
210     PPDPF -0.80 3.09e-14 1.54e-11
1895    PLA1A -0.79 3.97e-14 1.59e-11
217       LTF  0.78 3.12e-13 1.04e-10
625       FTL -0.77  6.5e-13 1.86e-10
480      NME4 -0.75 3.24e-12 8.09e-10
285       CFB  0.75 4.18e-12 8.50e-10
1172   ZNF761 -0.75 4.26e-12 8.50e-10
102     RDH11 -0.74 1.56e-11 2.84e-09
128      KLK3 -0.73 2.93e-11 4.88e-09
950   SELENOH -0.73 3.93e-11 6.04e-09
1957     MTG1 -0.73 4.79e-11 6.48e-09
677      SAA1  0.73 4.86e-11 6.48e-09
263   SLC30A4 -0.72 9.09e-11 1.14e-08
3    MARCKSL1 -0.72 1.13e-10 1.33e-08
889     KIF5C -0.71 1.58e-10 1.75e-08
28     GPR160 -0.71 2.04e-10 2.14e-08
1539      SCD -0.71 2.69e-10 2.69e-08
par(opar)
vis_gene(spe,"Acinar_Cell_Carcinoma","ENSG00000134339")

Version Author Date
24f5fe4 Stefano Cacciatore 2025-01-08
ac43fcf Stefano Cacciatore 2024-09-02
46cbd5a Stefano Cacciatore 2024-09-02
par(opar)
vis_gene(spe,"Acinar_Cell_Carcinoma","ENSG00000166741")

Version Author Date
24f5fe4 Stefano Cacciatore 2025-01-08
ac43fcf Stefano Cacciatore 2024-09-02
46cbd5a Stefano Cacciatore 2024-09-02
rowData(spe)[c("ENSG00000134339","ENSG00000166741"),]
[1] "SAA2" "NNMT"
samples_sub=as.factor(colData(spe_sub)$sample_id)
xy_sub=as.matrix(spatialCoords(spe_sub))
PMdata=passing.message(data_sub,xy_sub,number_knn = 7)

par(mfrow=c(1,2))

a=data_sub[,"SAA2"]
b=data_sub[,"NNMT"]
cc=cor.test(a,b)
txt=paste("r=",round(cc$estimate,digits=2))
plot(a,b,main="Pearson correlation",xlab="SAA2",ylab="NNMT")
mtext(txt)


a=PMdata[,"SAA2"]
b=PMdata[,"NNMT"]
cc=cor.test(a,b)
txt=paste("r=",round(cc$estimate,digits=2))
plot(a,b,main="APM correlation",xlab="SAA2",ylab="NNMT")
mtext(txt)

Version Author Date
24f5fe4 Stefano Cacciatore 2025-01-08
a11cbcc Stefano Cacciatore 2024-09-14
ac43fcf Stefano Cacciatore 2024-09-02
svg("output/Figures/Prostate/prostate-correlation.svg",height = 8,width = 14)
par(mfrow=c(1,2))

a=data_sub[,"SAA2"]
b=data_sub[,"NNMT"]
cc=cor.test(a,b)
txt=paste("r=",round(cc$estimate,digits=2))
plot(a,b,main="Pearson correlation",xlab="SAA2",ylab="NNMT",pch=20,col="#000000aa")
mtext(txt)


a=PMdata[,"SAA2"]
b=PMdata[,"NNMT"]
cc=cor.test(a,b)
txt=paste("r=",round(cc$estimate,digits=2))
plot(a,b,main="APM correlation",xlab="SAA2",ylab="NNMT",pch=20,col="#000000aa")
mtext(txt)
dev.off()

This extended analysis includes principal component analysis (PCA), pathology data analysis, and the application of KODAMA for dimensionality reduction and visualization, enhancing the understanding of spatial transcriptomics data in different prostate tissue types.

GSVA Enrichment Analysis with MSigDB

To explore enriched biological processes in our spatial transcriptomics data, we employ Gene Set Variation Analysis (GSVA) using MSigDB gene sets as a reference. To download the necessary data, please follow the steps provided at this link and create an account if required.

Loading Packages and Data

We start by loading the necessary packages and preparing our gene data for analysis:

 library("GSVA")
 library("GSA")
 library("VAM")
 geneset=GSA.read.gmt("../Genesets/msigdb_v2023.2.Hs_GMTs/h.all.v2023.2.Hs.symbols.gmt")
 names(geneset$genesets)=geneset$geneset.names
 genesets=geneset$genesets

genes=rowData(spe)[,"gene_name"]
spot_name=colnames(spe)
colnames(data)=genes

li=lapply(genesets,function(x) which(genes %in% x))

VAM=vamForCollection(gene.expr=data, gene.set.collection=li)
pathway=VAM$distance.sq

annotations=as.factor(annotations)
ta=table(annotations,clu)
path_clust=levels(annotations)[apply(ta,2,which.max)]
clu2=rep(NA,length(clu))
clu2[clu %in% names(which(ta["normal gland",]>50 & ta["Invasive carcinoma",]<50))  & annotations=="normal gland"]="Normal-phenotype"
clu2[clu %in% names(which(ta["normal gland",]>50 & ta["Invasive carcinoma",]>50))  & annotations=="normal gland"]="Tumor-phenotype"

bla

ta
                    clu
annotations             1    2    3    4    5    6    7    8    9   10
  benign                0    0    0    0    0   24    0   42    1    2
  blood vessel          0   19    0   21    4    0    0    0    0    0
  fibromuscular         5  710   54   85    0   11    4   99   30    3
  Gleason 3             0    0    0    0    0   78    0   42    0    0
  Gleason 4             0    0    0    0    0   57    0   77    0    0
  Gleason 5             0    0    0    0    0    0    0   70    0    0
  hyperplasia gland   613    2    9    1   89    0    0    0    0    0
  hyperplasia stroma    9    1    3    3  349    0    8    0    0    0
  immune cells          0    8    0    0    0    1    0   14    0    0
  Invasive carcinoma    3    2    1    0    0    2    0  183  564 1187
  Nerve                 0   40    0    0    0    0    0    0    0    0
  normal gland        412   53 1017  120   16    2    2    2  106    0
  normal stroma         0  819   33  817   64    0  293    0    0    0
  tumor stroma          0    0    0    0    0    0    0   21    0    0
ma=multi_analysis(pathway[!is.na(clu2),],clu2[!is.na(clu2)])

ma=ma[order(as.numeric(ma$`p-value`)),]

ma[1:10,]
                                            Feature          Normal-phenotype
32            HALLMARK_MYC_TARGETS_V1, median [IQR] 768.647 [726.611 808.582]
22                   HALLMARK_HYPOXIA, median [IQR] 486.527 [455.179 519.589]
16    HALLMARK_ESTROGEN_RESPONSE_LATE, median [IQR] 388.257 [355.903 420.169]
46 HALLMARK_UNFOLDED_PROTEIN_RESPONSE, median [IQR]  419.634 [396.73 441.259]
50     HALLMARK_XENOBIOTIC_METABOLISM, median [IQR] 327.539 [306.904 349.027]
7                  HALLMARK_APOPTOSIS, median [IQR] 477.722 [445.253 514.822]
1               HALLMARK_ADIPOGENESIS, median [IQR]   666.7 [639.883 698.168]
33            HALLMARK_MYC_TARGETS_V2, median [IQR] 141.694 [126.662 158.104]
28         HALLMARK_KRAS_SIGNALING_DN, median [IQR] 151.545 [129.868 181.938]
17     HALLMARK_FATTY_ACID_METABOLISM, median [IQR] 351.567 [328.476 375.083]
             Tumor-phenotype  p-value      FDR
32 863.132 [814.018 899.117] 3.27e-35 1.63e-33
22 435.231 [415.546 461.073]  6.5e-23 1.63e-21
16 339.735 [319.625 368.054] 2.62e-20 4.36e-19
46  455.502 [431.902 480.16] 5.35e-20 6.68e-19
50  298.05 [282.473 314.014]  5.3e-19 5.30e-18
7  440.981 [410.565 473.125] 7.84e-15 5.70e-14
1   633.917 [616.16 656.455] 7.98e-15 5.70e-14
33  162.81 [145.803 175.787] 2.94e-14 1.84e-13
28 128.098 [114.028 142.386] 8.91e-14 4.95e-13
17 323.622 [307.296 345.816] 3.63e-13 1.81e-12
library(ggpubr)
library(gridExtra)
par(mai=c(3,3,3,3))

df=data.frame(variable=pathway[,"HALLMARK_MYC_TARGETS_V1"],labels=annotations)
df=df[!is.na(df$labels) & samples=="Adenocarcinoma",]

my_comparisons=list(c("Invasive carcinoma","normal gland"))
Nplot1=ggboxplot(df, x = "labels", y = "variable", width = 0.8,palette = cols_pathology,las=2,
                 fill="labels",ylim=c(200,1400),       
                 shape=21)+  
  ylab("HALLMARK_MYC_TARGETS_V1")+ 
  xlab("")+
  
  stat_compare_means(comparisons = my_comparisons,method="wilcox.test")+
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1),legend.position = "none",plot.margin = unit(c(2,1,1,1), "cm"))




df=data.frame(variable=pathway[,"HALLMARK_MYC_TARGETS_V1"],labels=clu)
df=df[!is.na(clu2),]
cols=cols_cluster[as.numeric(names(table(df$labels)))]

my_comparisons=list(c(5,4),c(5,3),c(5,2),c(5,1))
Nplot2=ggboxplot(df, x = "labels", y = "variable", width = 0.8,palette = cols,
                 fill="labels",add = "jitter", ylim=c(200,1400),                  
                 add.params = list(size = 0.5, jitter = 0.2,fill=2),
                 shape=21)+  
  ylab("HALLMARK_MYC_TARGETS_V1")+ 
  xlab("")+
  stat_compare_means(comparisons = my_comparisons,method="wilcox.test")+
  theme(legend.position = "none",plot.margin = unit(c(2,1,1,1), "cm"))

egg::ggarrange(Nplot1,Nplot2,widths = c(2,1.2),nrow=1,labels = c('A', 'B'))

svg("output/Figures/Prostate/prostate-boxplot.svg",height = 9,width = 20)
egg::ggarrange(Nplot1,Nplot2,widths = c(2,1.2),nrow=1,labels = c('A', 'B'))
dev.off()

QuPath

xy=as.matrix(spatialCoords(spe))
rownames(xy)=rownames(colData(spe))

x_HR=seq(range(xy[,1])[1],range(xy[,1])[2],length.out =200)
y_HR=seq(range(xy[,2])[1],range(xy[,2])[2],length.out =200)

xy_HR_final=NULL
newsamples=NULL
for(s in levels(samples)){
  xy_HR=expand.grid(list(x_HR,y_HR))
  t=Rnanoflann::nn(xy[s==samples,],xy_HR,1)
  xy_HR=xy_HR[t$distances<(1.2*median(t$distances)),]
  xy_HR_final=rbind(xy_HR_final,xy_HR)
  newsamples=c(newsamples,rep(s,nrow(xy_HR)))
}
newsamples=as.factor(newsamples)
clu2=clu
clu2[clu %in% names(which(ta["normal gland",]>50 & ta["Invasive carcinoma",]<50))  & annotations=="normal gland"]="NP normal gland"
clu2[clu %in% names(which(ta["normal gland",]>50 & ta["Invasive carcinoma",]>50))  & annotations=="normal gland"]="TP normal gland"


clu3=refine_SVM(xy,clu2,samples,cost=100,tiles=c(5,5),newdata = xy_HR_final,newsamples = newsamples )

library(sf)
library(concaveman)
library(ggplot2)
library(dplyr)

# 1. Subset data and create a data frame
sel <- clu3 == "TP normal gland"

# Example: x, y are coordinates
x <- xy_HR_final[which(sel), 1]
y <- xy_HR_final[which(sel), 2]
data <- data.frame(x = x, y = y)

# 2. Perform K-means clustering (3 clusters as in your code)
km <- kmeans(data, 4)$cluster


g <- bluster::makeSNNGraph(as.matrix(data), k = 5)
g_walk <- igraph::cluster_louvain(g,resolution = 0.2)
km = g_walk$membership


# 3. Convert to sf object, add cluster attribute
sf_points <- st_as_sf(data, coords = c("x", "y"), crs = NA)
sf_points$cluster <- km

# Optional: Turn off spherical geometry if dealing with planar coordinates
sf_use_s2(FALSE)

# 4. Create separate concave hull polygons for each cluster
#    Split the points by their cluster, then run concaveman on each subset.
concave_list <- lapply(split(sf_points, sf_points$cluster), function(subset_sf) {
  hull <- concaveman(subset_sf, concavity = 2)
  # Preserve the cluster ID for the resulting polygon
  hull$cluster <- unique(subset_sf$cluster)
  hull
})

# 5. Combine all polygons into one sf object
concave_polygons <- do.call(rbind, concave_list)

library(smoothr)

smoothed_polygons <- smooth(
    concave_polygons, 
    method = "ksmooth",   # or "chaikin"
    smoothness = 3        # increase for more smoothing
)

# 6. Plot all points and polygons
ggplot() +
  geom_sf(data = sf_points, aes(color = factor(cluster)), size = 2) +
  geom_sf(data = smoothed_polygons, fill = NA, color = "black", size = 0.8) +
  labs(title = "Concave Hull by Cluster", color = "Cluster")

# 7. Write all polygons to a single GeoJSON file
#    Each polygon has the 'cluster' attribute, so you'll see multiple features.
st_write(smoothed_polygons, "output/tight_boundary.geojson",
         driver = "GeoJSON",
         delete_dsn = TRUE)

sessionInfo()
R version 4.4.3 (2025-02-28)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 20.04.6 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] smoothr_1.0.1               dplyr_1.1.4                
 [3] concaveman_1.1.0            sf_1.0-20                  
 [5] gridExtra_2.3               ggpubr_0.6.0               
 [7] VAM_1.1.0                   MASS_7.3-65                
 [9] GSA_1.03.3                  GSVA_1.52.3                
[11] KODAMAextra_1.2             e1071_1.7-16               
[13] doParallel_1.0.17           iterators_1.0.14           
[15] foreach_1.5.2               KODAMA_3.0                 
[17] Matrix_1.7-3                umap_0.2.10.0              
[19] Rtsne_0.17                  minerva_1.5.10             
[21] spatialLIBD_1.16.2          BiocSingular_1.20.0        
[23] harmony_1.2.3               Rcpp_1.0.14                
[25] SPARK_1.1.1                 nnSVG_1.8.0                
[27] scater_1.32.1               ggplot2_3.5.1              
[29] scuttle_1.14.0              SpatialExperiment_1.14.0   
[31] SingleCellExperiment_1.26.0 SummarizedExperiment_1.34.0
[33] Biobase_2.64.0              GenomicRanges_1.56.2       
[35] GenomeInfoDb_1.40.1         IRanges_2.38.1             
[37] S4Vectors_0.42.1            BiocGenerics_0.50.0        
[39] MatrixGenerics_1.16.0       matrixStats_1.5.0          
[41] workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] fs_1.6.5                  bitops_1.0-9             
  [3] httr_1.4.7                RColorBrewer_1.1-3       
  [5] backports_1.5.0           tools_4.4.3              
  [7] R6_2.6.1                  DT_0.33                  
  [9] HDF5Array_1.32.1          lazyeval_0.2.2           
 [11] rhdf5filters_1.16.0       withr_3.0.2              
 [13] cli_3.6.4                 labeling_0.4.3           
 [15] sass_0.4.9                proxy_0.4-27             
 [17] pbapply_1.7-2             askpass_1.2.1            
 [19] Rsamtools_2.20.0          R.utils_2.13.0           
 [21] sessioninfo_1.2.3         attempt_0.3.1            
 [23] maps_3.4.2.1              limma_3.60.6             
 [25] rstudioapi_0.17.1         RSQLite_2.3.9            
 [27] generics_0.1.3            BiocIO_1.14.0            
 [29] car_3.1-3                 ggbeeswarm_0.7.2         
 [31] abind_1.4-8               terra_1.8-42             
 [33] R.methodsS3_1.8.2         lifecycle_1.0.4          
 [35] whisker_0.4.1             yaml_2.3.10              
 [37] edgeR_4.2.2               carData_3.0-5            
 [39] CompQuadForm_1.4.3        rhdf5_2.48.0             
 [41] SparseArray_1.4.8         BiocFileCache_2.12.0     
 [43] paletteer_1.6.0           grid_4.4.3               
 [45] blob_1.2.4                misc3d_0.9-1             
 [47] promises_1.3.2            dqrng_0.4.1              
 [49] ExperimentHub_2.12.0      crayon_1.5.3             
 [51] egg_0.4.5                 lattice_0.22-7           
 [53] beachmat_2.20.0           cowplot_1.1.3            
 [55] annotate_1.82.0           KEGGREST_1.44.1          
 [57] magick_2.8.6              pillar_1.10.1            
 [59] knitr_1.50                tcltk_4.4.3              
 [61] rjson_0.2.23              codetools_0.2-20         
 [63] Rnanoflann_0.0.3          glue_1.8.0               
 [65] getPass_0.2-4             V8_6.0.3                 
 [67] data.table_1.17.0         vctrs_0.6.5              
 [69] png_0.1-8                 spam_2.11-1              
 [71] gtable_0.3.6              rematch2_2.1.2           
 [73] cachem_1.1.0              xfun_0.51                
 [75] S4Arrays_1.4.1            mime_0.13                
 [77] DropletUtils_1.24.0       pracma_2.4.4             
 [79] units_0.8-7               fields_16.3.1            
 [81] bluster_1.14.0            statmod_1.5.0            
 [83] bit64_4.6.0-1             filelock_1.0.3           
 [85] rprojroot_2.0.4           bslib_0.9.0              
 [87] irlba_2.3.5.1             KernSmooth_2.23-26       
 [89] vipor_0.4.7               matlab_1.0.4.1           
 [91] colorspace_2.1-1          DBI_1.2.3                
 [93] tidyselect_1.2.1          processx_3.8.6           
 [95] BRISC_1.0.6               bit_4.6.0                
 [97] compiler_4.4.3            curl_6.2.2               
 [99] git2r_0.33.0              graph_1.82.0             
[101] BiocNeighbors_1.22.0      DelayedArray_0.30.1      
[103] plotly_4.10.4             rtracklayer_1.64.0       
[105] scales_1.3.0              classInt_0.4-11          
[107] callr_3.7.6               rappdirs_0.3.3           
[109] stringr_1.5.1             digest_0.6.37            
[111] rmarkdown_2.29            benchmarkmeData_1.0.4    
[113] RhpcBLASctl_0.23-42       XVector_0.44.0           
[115] htmltools_0.5.8.1         pkgconfig_2.0.3          
[117] sparseMatrixStats_1.16.0  dbplyr_2.5.0             
[119] fastmap_1.2.0             rlang_1.1.5              
[121] htmlwidgets_1.6.4         UCSC.utils_1.0.0         
[123] shiny_1.10.0              DelayedMatrixStats_1.26.0
[125] farver_2.1.2              jquerylib_0.1.4          
[127] jsonlite_2.0.0            BiocParallel_1.38.0      
[129] config_0.3.2              R.oo_1.27.0              
[131] RCurl_1.98-1.17           magrittr_2.0.3           
[133] Formula_1.2-5             GenomeInfoDbData_1.2.12  
[135] dotCall64_1.2             Rhdf5lib_1.26.0          
[137] munsell_0.5.1             viridis_0.6.5            
[139] reticulate_1.42.0         stringi_1.8.7            
[141] zlibbioc_1.50.0           AnnotationHub_3.12.0     
[143] ggrepel_0.9.6             doSNOW_1.0.20            
[145] Biostrings_2.72.1         locfit_1.5-9.12          
[147] rdist_0.0.5               ps_1.9.0                 
[149] igraph_2.1.4              ggsignif_0.6.4           
[151] ScaledMatrix_1.12.0       BiocVersion_3.19.1       
[153] XML_3.99-0.18             evaluate_1.0.3           
[155] golem_0.5.1               BiocManager_1.30.25      
[157] httpuv_1.6.15             RANN_2.6.2               
[159] tidyr_1.3.1               openssl_2.3.2            
[161] purrr_1.0.4               benchmarkme_1.0.8        
[163] rsvd_1.0.5                broom_1.0.8              
[165] xtable_1.8-4              restfulr_0.0.15          
[167] RSpectra_0.16-2           rstatix_0.7.2            
[169] later_1.4.1               viridisLite_0.4.2        
[171] class_7.3-23              snow_0.4-4               
[173] tibble_3.2.1              memoise_2.0.1            
[175] beeswarm_0.4.0            AnnotationDbi_1.66.0     
[177] GenomicAlignments_1.40.0  cluster_2.1.8.1          
[179] shinyWidgets_0.9.0        GSEABase_1.66.0